
NASA Contractor Report 194965

ICASE Report No. 94-71

IC S
MODELING JETS IN CROSS FLOW

(NASA-CR-194965) MODELING JETS

CROSS FLOW Final Report (ICASE)
37 p

IN N95-I 1930

Unclas

G3/34 0022778

A.O. Demuren

Contract NAS 1- 19480

August 1994

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association



.7

_ T t



MODELING JETS IN CROSS FLOW

A.O. Demuren 1

Department of Mechanical Engineering

Old Dominion University

Norfolk, VA 23529

ASTRACT

Various approaches to the modeling of jets in cross flow are reviewed. These are grouped

into four broad classes, namely: empirical models, integral models, perturbation models, and

numerical models. Empirical models depend largely on the correlation of experimental data and

are mostly useful for first-order estimates of global properties such as jet trajectory and velocity

and temperature decay rates. Integral models are based on some ordinary-differential form of the

conservation laws, but require substantial empirical calibration. They allow more details of the

flow field to be obtained; simpler versions have to assume similarity of velocity and temperature

profiles, but more sophisticated ones can actually calculate these profiles. Perturbation models

require little empirical input, but the need for small parameters to ensure convergent expansions

limits their application to either the near-field or the far-field. Therefore, they are mostly useful

for the study of flow physics. Numerical models are based on conservation laws in partial-

differential form. They require little empirical input and have the widest range of applicability.

They also require the most computational resources. Although many qualitative and quantitative

features of jets in cross flow have been predicted with numerical models, many issues affecting

accuracy such as grid resolution and turbulence model are not completely resolved.
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was in residence at the Institute for Computer Applications in Science and Engineering 0CASE), NASA Langley Research Center, Hampton,

VA 23681--0001





Introduction

In the earliest studies of jets in cross flow, empirical models were developed to correlate

experimental data obtained under various idealized conditions. Such models are reviewed in

detail by Abramovich (1963), Rajaratnam (1976) and Schetz (1980). They mostly give the

jet trajectory and center-line decay rates. The earliest approach based on the actual solution

of conservation equations belongs to the class of integral models. These are derived either

by the application of conservation principles to a finite control volume or by the use of profile

assumptions to simplify the partial differential equations which describe conservation laws. These

models offer more flexibility than empirical models. Jet trajectories, decay rates, growth rates,

and even cross-sectional shape have been predicted. However, empirical input is usually required

in the form of entrainment rates or drag coefficient. Further, it may be difficult to prescribe cross-

sectional profiles in complex situations. Numerical models attempt to solve some form of the

full partial differential equations, which represent conservation laws, by using a finite-difference,

finite-volume or finite-element method. Little empirical input is required, hence they have the

potential for the widest range of applicability. However, there may be problems with inadequate

grid resolution, imprecise boundary conditions and deficiencies in the turbulence model used for

closure of the mean flow equations. Recently, several models based on perturbation methods

have been proposed. These are mostly of scientific interest, since drastic assumptions such as

inviscid flow, negligible jet distortion, small deflection, etc., may be required for the perturbation

analysis. Thus, they are used mainly to study the flow physics in limited regimes, either in the

near-field or in the far-field.

In practical engineering applications, jets in cross flow are found in both confined and

unconfined environments. Examples of confined jets in cross flow include: 1) Vertical and Short

Take-Off and Landing (V/STOL) aircraft in transition from hover to forward flight, in which case,

the jets from its engines impinge on the ground surface; 2) Internal cooling of turbine blades

by air jets impinging on the leading edge, and; 3) Dilution air jets in combustion chambers of

gas-turbine engines, where the jets are injected radially into the chamber, through discrete holes

along its circumference, in order to stabilize the combustion process near the head, and to dilute

the hot combustion products near the end.



Practicalexamplesof jets in unconfinedor semi-infinite crossflow are more numerous.

Theseinclude:l) Flow situationsresulting from the action of crosswinds on effluents from

cooling towers,chimneystacks,or flamesfrom petrochemicalplants;2) Dischargeof sewage

or wasteheatinto rivers or oceans;3) Film cooling of turbineblades;4) The useof air curtains

to preventcold air from enteringopenspacesin industrial buildings,and;5) Thermalplumes

rising into crosswinds in the atmosphere.

The configurationof a jet in crossflow is illustratedin Fig. 1. The axisof the jet is usually

definedasthe locus of the maximum velocity or total pressure.The jet trajectory is referred

to this line, asopposedto the center-lineof the jet, which is mid-way betweenthe inner and

outerboundariesof the jet, usually determinedfrom flow visualization. The main parameter

which characterizesajet in crossflow is thejet-to-cross-flowvelocity ratio, R (= Uj/Uo), or the

momentumflux ratio J (= _R2). In confinedjets, the normalizedwall distanceH/D may also

be importantif it is not very large. In multiplejets, thenormalizedspacingS/D will bea factor.

As shownin Fig. 1, the jet in a crossflow hasthreemainregions: thepotentialcorezone

(I); the zone(11)of maximumdeflection;andthe far-field zone(HI). Thepotential core, in the

centralpartof zoneI remainsrelativelyunaffectedby thecrossflow thoughits lengthis reduced

in comparisonto that of a jet in stagnantsurroundings.Thus,for a turbulentjet it reducesfrom

(,-_6D) to 6.2D e -3"3/R [Fan (1967), Pratte and Baines (1967)] or 6.4/(1+4.6/R) [Kamotani and

Greber (1972)]. The two relations deviate at low R, where the potential core length is strongly

influenced by actual exit flow conditions. In zone II, the jet experiences the most deflection. The

pressure gradient across the jet is maximum as well as the entrainment rate. This is the most

difficult zone to analyze accurately. In the far-field zone III, the jet axis approaches the crossflow

direction asymptotically, and the flow field is nearly self-similar. All models can predict this

region fairly well, given the correct boundary conditions at the end of zone II.

Four broad classes of models, namely, empirical, integral, perturbation and numerical, are

now described. Emphasis will be given to the last two, where most of the recent advances have

been. The first two methods were reviewed extensively in monographs by Abramovich (1963),

Rajaratnam (1976) and Schetz (1980), and in a review article by Demuren (1985a).



Empirical Models

Empiricalmodelspresentthe simplestmeansof predicting globalpropertiesof jets in cross

flow. They dependlargely on the correlation of experimentaldata,and the accuracyof the

predictionsmaydependon the closenessof the conditionsof the particularproblemof interest

to thosein thedatabaseusedfor thecorrelation.Dueto their low costandeaseof use,empirical

modelsare most usefulfor first-orderestimatesand asqualitativechecksfor resultsproduced

by other methods.

The mostcommonparametergiven by empirical models is the jet trajectory. For a single

circular turbulentjet injectednormally into a crossflow, the trajectoryhastheform:

y_=a

where, in the range of J between 2 and 2,000, a has a value between 0.7 and 1.3, b has a value

between 0.36 and 0.52 and c takes a value between 0.28 and 0.40, depending on experimental

conditions. The values a=0.85, b=0.47 and c=0.36 appear to be a good compromise for the

intermediate range of J. This equation should also be valid for confined jets, up to the point

of contact, and for multiple jets with medium to large spacing ratios. Equation (1) with b =

0.36, and c = 0.28 also gives the physical boundaries of jets in cross flow [Pratte and Baines

(1967)]; with a = 1.35 and 2.63 for the inner and outer boundaries, respectively, and a = 2.05

for the center line. For plane jets in confined cross flow Kamotani and Greber (1974) found

that Eq. (1) can be used with a = 2.0 (1-e-H/D), b = 0.28 and c = 0.50. Equations for other

parameters such as entrainment rates, velocity profiles, temperature trajectories, etc., can be

found in Demuren (1985a).

Integral Models

Integral models are the first elaborate calculation procedures applied to predict the behavior

of jets in cross flow. In these models, integral equations are derived either by considering

the balance of forces and momentum changes over an elementary control volume of the jet,

or by integrating in two spatial directions, the three-dimensional, partial differential equations

governing the jet flow. In either case, a set of ordinary differential equations is obtained which



canbesolvedanalyticallyor numerically.Empiricalinput is requiredto prescribepressuredrag,

entrainmentratesandspreadrates.Theformerapproachis easierto understandandto implement

and is thereforemorepopular. On theotherhand,the latter approachinvolvesmoreextensive

mathematicalmanipulation,but it is moretransparentin theassumptionsmadeandaffordsmore

flexibility in dealingwith complexboundaryconditionsand trajectories.

Integral models flourished betweenthe late 1960's, when more flexibility was required

thancould be obtainedwith empirical modelsand the early 1980's,whenthe rapid growth in

computerhardwareand softwaremadeelaboratenumericalcomputationsof three-dimensional

flows feasible.Many of theearliermodelarereviewedby Rajaratnam(1976). In thesemodels,

therewasanassumptionof the constancyof the momentumin eitherthe initial jet direction, the

crossflow direction or the axial direction,and thejet wasbentover by a prescribedpressure

drag force, or entrainmentof ambientfluid. None of thesemodelscould predict correctly the

jet trajectoryover a rangeof R [Demuren(1985a)]. Thus,they offer no advantageover much

simplerempirical models.

More refinedintegralmodelsconsidereffectsof both thepressuredragand theentrainment

of crossflow ambientfluid on thejet. A typicalmodelis thatproposedby Fan(1967)for buoyant

jets in crossflow. Thecrosssectionof thejet wasassumedcircularwith radiusx/_ b, andtheex-

cessvelocity profilewasassumedto beGaussian,i.e.,V - Uocos0 = (Vm_x - Uo cos 0)e -n_/b2.

The resulting set of ordinary differential equations can be written as:

Continuity

x-momentum

y-momentum

A(/) = CpoUe

T_.(pAAvVd - 2 cos 0) = C poUeUo + 0.5 CDAz poU2o sin 30

d(pAAvV2sin0) = -A(p- po)g + 0.5 CDAz poUo2sin 20cos0
de

Scalar (Temperature/Concentration)

d

d--_( p a Ao'v' _b) = 0
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whereA is the cross-sectionalareaof the jet, C its circumference,p is the density of the jet

fluid, g the acceleration due to gravity, and Av and Aft are respectively, momentum or scalar flux

coefficients which depend on the assumed velocity and scalar profiles. Ue is the entrainment

velocity. Fan proposed that it should be proportional to the velocity vector difference between

the jet and the cross flow, but this was found to be unreliable. Abraham (1971) proposed an

entrainment model with two parts as:

Ue = Emom (Vmax - Uo cos O) + EthUo sin 0 cos 0

where the coefficients Emon and Eth have the values 0.057 and 0.50, respectively. The first part of

Eq. (6) represented the entrainment of a momentum jet in a nearly stagnant ambient fluid and the

second part the entrainment into (momentum-free) thermals under similar conditions. Cos0 was

introduced artificially into the second part to prevent it from contributing to entrainment when the

jet was nearly perpendicular to the cross flow. With this entrainment model, the drag coefficient

Co was given a value of 0.3. Equations (2) through (6) were then integrated numerically. With

this model, Abraham (1971) was able to obtain quite good agreement with experimental data

of jet trajectory and axial concentration decay. Typical results are shown in Fig. 2. For a

non-buoyant jet, Eth = 0 and p = Po so that the buoyancy term in Eq. (4) is also zero.

Equations (2) through (6) may also be applied to predict plane jets in cross flow by

substituting the appropriate expressions for the area A and the circumference C. The entrainment

coefficients Emom and Eth and the drag coefficient CD must then be calibrated with plane jet data.

In order to extend the range of applicability of integral models to include more flow physics

and be able to deal with more practical situations, such as multiple jets in varied arrangements,

highly non-uniform cross flow, etc., more elaborate models have been proposed by Campbell

and Schetz (1973), Isaac and Schetz (1982), Makihata and Miyai (1983), amongst others. All

these models were derived based on the control volume approach and are applicable mainly to

jets with plane trajectories. Hirst (1972) and Schatzmann (1979) developed models based on the

integration in the cross plane of the jet of the three-dimensional partial differential equations by

making the assumption of axi-symmetry and that profiles of the excess velocity are Gaussian.

These latter models could be applied to situations with three-dimensional jet trajectories.

5



Although integral modelsallow economicalpredictionof severalflow propertiesin com-

parisonto full-blown numericalmodels,they havebeencriticized for the needto assumethe

shapeof the jet cross-sectionandprofile functions, someof which maynot be realistic for the

whole evolution of the jet in crossflow, especiallyin the zoneof maximumdeflection. How-

ever, it appearsthat in spiteof the apparentoversimplification,integralmodelscanbemadeto

performwell in somecaseswith propercalibration. Adler andBaron(1979)proposeda quasi-

three-dimensionalmodel which did not assumethe cross-sectionalshapeor similarity profiles

for the velocity, but thesewere computedalong with other flow variables. The characteristic

kidney-shapedcross-sectionof thejet wascomputedsuccessfullyby consideringtheevolutionof

vorticesdistributedalongtheboundariesof thejet in aLagrangianmanner,andthecross-section

wasallowedto grow at a ratewhich wasan averagebetweenthe growth ratesof free jets and

vortexpairs. Similarly,velocity profileswereallowedto changein thezoneof maximumdeflec-

tion, culminating in self-similar profilesonly in the far-field zone(HI). The model givesquite

goodpredictionof the three-dimensionalflow fields of jets in crossflow studiedexperimentally

by Kamotaniand Greber(1972).

PerturbationModels

If in the jet in crossflow problema small parameteris defined,perturbationmethodscan

beusedto solvethe governingequations.Most applicationsof perturbationmodelshave been

to study the flow of strongjets in a weak crossflow. In the initial stage,the flow can be

consideredto be a small perturbationfrom that of a free jet in stagnantsurroundings,and the

jet stiffnessA (= I/R) can beusedasthe smallparameter.This placesa severerestrictionon

the rangeof applicability of suchmodels. However,they havethe advantageof not being too

dependenton empiricalcalibrationas integralmethodsare,and theyarecomputationallymuch

cheaperthannumericalmethods.The goal is to predict the main featuresof jets at high R (

>10), including trajectory,cross-sectionalshape,velocity field, vorticity field,mixing, etc.,with

minimal empirical input. It wasbelieved[Needhametal. (1988),(1990)] that thejet distortion

anddeflectioncouldbeobtainedby inviscid analysesbasedon theevolutionof vortex filaments

around the jet as it exits from a circular pipe or orifice. This approachwas basedon the
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original work of Chen(1942)which wasalsothe basisof fairly successfulcomputationswith

the integralmodel of Adler and Baron (1979).

Chen'smodel approximatesthe near-fieldastwo regionsof irrotational flow, the jet flow

and the externalcrossflow, separatedby a vortex sheet. The three-dimensionalvortex sheet

can thenbe approximatedby a two-dimensionalvortex sheet,which originatesfrom the pipe

or orifice exit and evolves in time in the axial direction. Needhamet al. (1988), (1990)

applieda three-dimensionalmodel, with perturbationexpansionsfor the potential flow within

andoutsideof the jet. The distortionof thejet could bepredictedreasonablywell, but contrary

to earlier studies,no jet deflectionwasobtained,if the jet issuednormally into the crossflow.

Surprisingly,with a componentof the crossflow in the direction of the jet, somedeflection

wasobtained. This discrepancywasexplainedby Coelho and Hunt (1989) who showedthat

the two-dimensionaltime-evolvingvortex sheetmodelwas a poor approximationfor the fully

three-dimensionalvortex sheetmodel.

The two-dimensionalvortex sheetequationcanbe written as

07 0
+ = o0-7

where 7 is the vortex strength and Us is the average speed of the flow across the layer, using

the nomenclature of Fig. 3(a). If -/(0, t), Us (0, t) and R(0, t) are approximated as Taylor series

expansions with respect to t, derivatives of % Us and R of any order with respect to t, at t=0,

can be evaluated. This gives the shape of the vortex sheet or the jet boundary as

R(O,t)= Ro [2RoCOS20t2+ [6Ro {3cos30- os0} +O(t')

2y

If it is assumed that elements of the vortex-sheet travel at half-speed, such that t = U---j'and Uj

and Ro are used for normalization, then Eq. (8) becomes:

R(O,y)= l- [2y2 cos20]A2- [4y3{3cos30-cosO}]A3 + O(A 4)

However, in the presence of the cross flow, the flow in the jet pipe is distorted [Andreopoulos

(1983)], so that Uj is not uniform, and Eq. (9) may not be a good approximation for Eq. (8).

The actual non-uniformity of the jet exit flow can be calculated using a fully three-dimensional



vortex-sheetmodel. In this case,the longitudinaland transversecomponentsof vorticity must

beconsidered.As shownin Fig. 3(b), thesecanbeapproximatedby the verticaland azimuthal

components"Tyand 7s, respectively. The general expression for the strength of the vortex sheet

can be written in vector form as

_'Y + .....

{0 0}.TheverticalcomponentofEq.(10) iswhere -_ = {Ts, 7y }, l_v = {Us, Uy } and x_ = Os' ay

07y 0 OUy
+ =

which contains a source term, in contrast to F_t. (7). This source term expresses the rate at which

fluid elements rotate as they travel up the vortex sheet. Thus, the vertical vortex strength may

be strongly influenced by the azimuthal vortex strength and variations in the azimuthal velocity.

The solution of the three-dimensional vortex-sheet problem, in terms of the potential flow inside

the jet, and the external potential flow gives the shape of the vortex-sheet to third order as

R(O, Y) = 1 - )_2 y2 _ 2C2y - AnJa(o'n)e -a'_y - 1 cos 20
n-_ l

where C2 is a constant and An are coefficients given by the boundary conditions. J3( ) are

Bessel functions of third order, and an are zeros of J2 (). Solutions for the velocity field (in

terms of tl_e velocity potential) and the pressure field are also given in terms of Bessel functions.

Comparison of Eqs. (9) and (12) shows that the O (A 3) term in the former, which produces the

deviation from symmetry and thus the jet deflection is absent in the latter. Therefore, Coelho and

Hunt (1989) concluded that a three-dimensional inviscid vortex-sheet model could not produce

jet deflection. Although, the two-dimensional model of Chen (1942) could produce a deflection,

this was an incorrect approximation of the three-dimensional flow. However, by introducing a

vertical component to the cross flow, the symmetry in Eq. (12) may be broken and a second

small parameter is introduced into the perturbation expansion, as in the works of Needham et

al. (1988), (1990). Then, jet deflection would occur.



CoelhoandHunt (1989)postulatedthat viscousor turbulententrainmentwasnecessaryfor

jet deflection.Theyproposedanentrainingvortex-sheetmodel[seeFig. 3 (c) for nomenclature].

The entrainmentvelocity from the externalcrossflow is given by

_ =_(_+_)'I_+o(_)

where e is the entrainment coefficient, which must be prescribed empirically, and it now becomes

a second small parameter for the perturbation expansion. The mixing layer within the vortex-

To the leading order, thesheet entrains fluid from both the jet and the external cross flow.

entrainment rates are assumed proportional, so tllat

V,.e =e c(7_ + 7,_)'/2 + O(e2)

where c is a constant of O (1).

layer is

The equation for the conservation of mass within the mixing

O[Uo(R,-Rj)]+_ U_\ .2

{ [R2e -I- (_-_12]ll2--t-c[Rff-t- I-_12] 112}

Equation (15) must be solved along with the potential flow equations for the jet flow and the

external flow. The solution yields for the mean radius

n(0,u)= 1+ y_+ [(1+ _)y_o_0]_A-[z(u)_o_2O]__

+0 (e2, _3, eA2)

where Z(y) = y2 _ 2C2y - __, AnJ3(an) [e -_"y - 1]. Comparison of eqs. (12) and (16) shows
n=l

that the deviation from symmetry is now of O(eA), so that jet deflection would occur, as one

would normally expect.

Higuera and Martinez (1993) have proposed a mixed perturbation/numerical model which

does not use the vortex-sheet concept but solves the parabolized Navier-Stokes (PNS) equations



in thedistortionregionof jets in weakcrossflow (R>15).Themodelisapplicableto laminarflow

or a turbulentflow in which the assumptionof a constanteddy viscositywould be appropriate.

The weakcrossflow is necessaryso that thereis only mild curvaturein thedistortion zoneII,

enablingthegoverningequationsto beparabolized.Furthermore,thereshouldbe little deviation

of thejet flow in thedevelopmentzoneI from thatof a freejet, sothat theflow field at theend

of zoneI andthebeginningof zoneII canbeprescribedfrom Landau'sself-similarsolutionfor a

point sourceof momentum[Batchelor(1967)]. A perturbationmethodis usedto solvethe PNS

equationsfor small y, with y asthe small parameter.For intermediatevaluesof y, a parabolic

numericalmethodis used.However,computationsmustbestoppedoncethedistortionbecomes

too largefor the assumptionsof negligibleaxial diffusion and pressuregradientto be valid.

For smally = [O(4yw)],whereYw= [(x/_/16)RD],thedeflectionof thejet, ¢3,will besmall.

Thecontinuity andmomentumequations,in dimensionlessvariables,can thenbewritten for the

axial velocity component,v and cross stream velocity vector I_ = {u,w} as

av

+oy J

v O_ __02_r+fir = + +

where V = {_, _Tz} and _2 _We, _r_ • The requirement that Yw should be beyond the

development zone I indicates how large R must be for the analysis to be valid. For example for

turbulent flow, with a development length _6D, R > 15. Therefore _ _ 0, and terms in/_2 can

be neglected. If the pressure gradient term is also eliminated by combining the divergence of

Eq. (19), with the continuity equation, the governing equations become

_V

O_ f_ Ov__ Ou Ov

Ow Ou
f__

Oz Oz

Ow Ov

By Ox
+ V2f_
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wheref_is the verticalcomponentof vorticity. Equations(20) - (22) areparabolicin y, sothey

can be solvedby marching in zone II.

The initial conditionsarederivedfrom Landau'sself-similar profilesas

(yu, yw, yv, y2S2) ---, ( V_ cos O, Vrs sin O, vs, O) as y ---* 0

where,

v. - 47(1-
(1+ 72)2

The boundary conditions as x _ cx_ are

VS --

8 r

(1+ 72)2 '7 u

v=w=fl=O; u ---+1

the near-field solution has the form

1
0)+

The functions on the right hand side of Eq. (25) depend only on 7 and 0, whereas Eqs. (20) - (22)

are functions of r/, 0 and y. Hence, by substituting Eq. (25) into Eqs. (20) - (22) and collecting

terms of like order in y, solutions of different order can be found. Of course, terms of order

(-1) will reproduce the initial conditions. This approach is really quite restrictive. The several

requirements of large R, small y, constant turbulent eddy viscosity and low Reynolds number

exclude it from consideration as a realistic tool for practical computations of jets in cross flow.

In general, perturbation models are not yet sufficiently mature to become more than curious

tools of analysis. A redeeming factor is that it is especially in those high R flows, for which they

are valid, that most numerical models are least accurate. In these flows, there are substantial

regions with high shear and rates of strain, in which standard discretization schemes and

turbulence models may become inadequate.

11



NumericalModels

Numerical modelshave the most potential for wide generalityand can, in principle, be

appliedto the whole rangeof jet in crossflow situations,confinedor unconfined,low medium

or high R, singleor multiple jets, impingingon a wall or on otherjets, swirling, homogeneous

or heterogeneouscrossflow, compressibleor incompressible,etc. The analysisstartsfrom the

generalconservationlaws statedin partial differential equationform, which are the Navier-

Stokesequationsfor the velocity field, andcorrespondingenergyor speciesequationsfor the

temperatureor concentrationfields, respectively. Theseequations,which describeunsteady,

three-dimensionalflow cannot be solveddirectly in practical applicationsfor turbulent flows.

In incompressiblefluid flow, time-averagedforms, and in compressiblefluid flow, density-

weighted,time-averaged(or Favre-averaged)forms of theequationsaresolved.The processof

time-averagingintroducesa closureproblemdue to non-linearcorrelationbetweenfluctuating

velocity and/ortemperature/concentrationfields. Turbulencemodelsare requiredto determine

thesecorrelations,therebyaffectingclosureof the systemof equations.Most numericalmodels

appliedto thejet in.crossflow problemusetheeddyviscosityconcept.In its simplestform, the

turbulenteddy viscosity is prescribedas a constant,whereasmore sophisticatedmodelssolve

partial differential equationsfor turbulentquantifies,from whichthe eddy viscositydistribution

can thenbe obtained.Experimentalstudiesby AndreopoulosandRodi (1984)show that there

aresignificantregionsof the jet crossflow interactionsin which the eddy viscosityconceptis

invalid. Demuren(1992)proposeda numericalmodelin whichtheeddyviscosityconceptis not

invoked but partial differential equationsaresolvedto determinedistributionsof the turbulent

correlationsdirectly. In most numericalmodels,the computationaldomainencompassesthe

whole region in which the influenceof the jet is felt, or if necessarythe whole field of the jet

andcrossflow. No assumptionsarerequiredasto theevolutionof thejet within theflow domain,

but this is obtainedas a result of the computations.It is only necessaryto prescribeboundary

conditionsat the chosencomputationalboundaries.The two major issuesin the applicationof

numericalmodelsto jets in crossflow are the accuracyof the basicnumericalmethodand the

accuracyof the turbulencemodel.

12



The time-averaged,three-dimensional,steady-statemeanflow equationscan be written in

Cartesiantensornotation as

continuity

momentum

scalar

[ (o<0 0 0 -puiul+tt +
Ox_(pU_U_)- &,P + -5-_z_ \ &_ -5-_x,]

o _b .[-; ,,,e+ -;_l# o_,]b-g.z(pu_¢)= & +

with i = 1, 2, 3 and l = 1, 2, 3 representing properties in the lateral, vertical and longitudinal

directions, respectively. The equations are expanded with Einstein's summation rule for repeated

indices, xi are the Cartesian coordinates and Ui the Cartesian velocity components. ¢ may

represent any scalar such as the temperature or species concentration. -puiul and -- pUlt9

represent the Reynolds stresses and the turbulent scalar fluxes, respectively. Distributions of

these quantities are obtained from the turbulence model. Also, # is the molecular viscosity and

a the corresponding Prandtl of Schmidt number. S¢ is the source term for the temperature or

concentration equation.

The task of the turbulence model is to provide distributions for the Reynolds stresses and

the scalar fluxes so that the mean flow Eqs. (26) to (28) can he closed. In the Boussinesq eddy

viscosity concept, the Reynolds stresses are calculated from

(o< ov, 
-puiut = #t \ Oxz + -_x,,] - 2/3 pkSit

The corresponding eddy diffusivity concept gives

-p utO- #t 0¢
a_ Oxt

where #t is the turbulent eddy viscosity, a¢ is the turbulent Prandtl or Schmidt number, k is the

turbulent kinetic energy (per unit mass) and 5it is the Kronecker delta which is equal to unity

when i = l, and zero otherwise.

13



The mostcommonmethodfor calculatingthe distribution of #t is through the k-e turbulence

model [Launder and Spalding (1974)]. This gives

k 2
#t = c_ p--

The distributions of k and, are then obtained from solution of transport equations which can

be written in Cartesian tensor form as

"_xz(p Uzk) = -_zi "_k-_zt + P Pk - P'

where e is the rate of dissipation of k, and Pk is the rate of production of k through the interaction

of the Reynolds stresses with the mean flow. It is given by

_OUt
Pk = -umUt Ox m

The empirical coefficients which appear in Eqs. (29) -- (33) are given the standard values c#

= 0.09, c_1 = 1.44, cc2 = 1.92, _ = 0.9, o'k = 1.0 and ac = 1.3.

Simpler eddy viscosity relations have been utilized with reasonable success in some studies.

Chien and Schetz (1975) prescribed a constant value for #t, proportional to the jet velocity

excess and the jet diameter. However, in a subsequent study Oh and Schetz (1990), calculated

#t from a relation which takes into consideration the complex shape of the jet and the relative

magnitude of the axial turbulence intensity to the velocity excess. Thus

#t = 0.037 f p hi� 2 AUc

where bl/2 is the characteristic half width of the jet, AUc the centerline velocity excess, and f

( = u'e/AU_ e) takes a value of 2 in the potential core and {1 + exp[-1.134((- (o)]} in the

main jet region. For computations at high R, Sykes et a....._l.(1986) proposed a one-equation model

which solves the k equation such as Eq. (32), but calculates the Reynolds stresses from

-p UiUl = p kl/2A + _x/]
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where A is a length scale given by

A = 0.088D + 0.0088r

D is the jet diameter and r is the distance from the center. In spite of the rather crude

length scale assumption, computed results, of the mean flow (for R=2) agreed reasonably

with experimental data. However, turbulent kinetic energy levels were grossly overpredicted,

especially in the wake region.

Demuren (1992), (1994) and Alvarez and Jones (1993) have used various Reynolds stress

models (RSM) to investigate the effect of the turbulence model on computations of jets in

cross flow. Model computations in which the eddy viscosity concept is not invoked but partial

differential equations are solved for the Reynolds stresses are compared to those using the k-e

model and to experimental data. The Reynolds stress equations can be written in Cartesian

tensor notation as

7xt (Ut u-7_)= Dii + Pij + 7rij- cij

where D(/is the turbulent diffusion, Pij is the production, _rij is the pressure-strain correlation and

(gU OU
_ij the dissipation rate. The production term Pij = -uiut _,, - ujut -_-'[x_,and the dissipation

rate is assumed to be locally isotropic so that eij = 2/3 _Siie. Dij and rrij contain higher-order

correlations, and so must be approximated for closure at this level. In Demuren (1992), these

terms are modeled after proposals of Daly and Harlow (1970) (denoted by DH) and Launder,

Reece and Rodi (1975) (denoted by LRR), respectively. In Demuren (1994) and Alvarez and

Jones (1993), additional models for Dij and 7rij are considered, including those proposed by

Mellor and Herring (1973) (denoted by MH) and Speziale, Sarkar and Gatski (1991) (denoted

by SSG), respectively. The latter combination of models was found to give the best overall

predictions of developed turbulent plane channel flow [Demuren and Sarkar (1993)]. The DH

and MH diffusion models can be written, respectively, as

axk \ _ Oxl J

\ Oxk + ox--T+ Ox, )Oxki--
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with Csl = 0.22 and Cs2 = 0.072. The pressure-strain models can be written in the general form

7rij = Oto e bij nt-al e(bikbkj- llIt_ij)-[- a2 k Sij

-4-a3Pkbij+k{c_4(bikSjkq-bjkSik- 32--6ijbklSkl)

-4-c_5 (bikWjk -4- bjkWik) }

where bij = (_-16ij)is the Reynolds stress anisotropy tensor, Sij = ½(-,_xUi+ _x_) is

the rate of strain tensor, Wij _ _ _,"_xj - _xi - is the rotational tensor, and II = blkbkl is the

second invariant of bij. For the LRR model, ao = -3 + f,,,, al = o_3 = 0, ot 2 = 0.8, o_4 = 1.745

and a5 = 1.309 - 0.24 fw. For the SSG model, ao = -3.4, al = 4.2, a2 = 0.8 - 1.3 II 1/2,

a3 = -1.8, a4 = 1.25 and a5 = 0.40. fw is a wall proximity function which has a value of

unity near a wall and zero in a turbulent flow free from walls. The correct rate of decay away

from walls is a subject of controversy [Demuren and Rodi (1984)]. It is also difficult to specify

in complex flows with curved walls or multiple walls. The absence of such a term makes the

SSG pressure-strain model rather attractive for application to complex flows.

A turbulence modeling approach which is intermediate between the k-_ model and the full

Reynolds stress model was utilized by Baker et al. (1987) to calculate the near field of jets in

cross flow at high R. This is the so-called algebraic Reynolds stress model, which is derived

by dropping the convection and diffusion terms in Eq. (38). Thus, implicit algebraic equations

are obtained which can be solved simultaneously for the Reynolds stresses. Baker et al. (1987)

used further simplifications of these equations to obtain explicit expressions for the Reynolds

stresses. These expressions contain k and _ as unknowns so that Eqs. (32) and (33) must still

be solved before the Reynolds stresses can be calculated. This approach fails within the general

class of non-linear k-e models reviewed by Speziale (1991).

The boundary conditions applied to the equations depend on the particular problem. The

various types of boundaries which may exist in these flow situations are inflow, outflow, wall,

symmetry planes and the free stream. At inflow boundaries, the values of the dependent variables

are prescribed or deduced from experimental data. At outflow planes, boundary conditions such

as zero traction force or zero normal gradient are usual prescribed. It is normal to prescribe

no-slip conditions along walls, but in order to bridge the flow between the fully turbulent region
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andtheviscoussublayernearthewall, thewall-functionmethod[LaunderandSpalding(1974)],

which is basedon theassumptionof localequilibrium, is usuallyemployedto prescribevariable

valuesalongthe first setof grid nodesnearestto the wall. Kim andBenson(1992)did not use

this approach.Rathera two-layermodelwasusedto integratetheequationsall the way down

to the wall. Sykeset al. (1986)and Oh and Schetz(1990)avoidedthis problementirely by

usingslip conditionsat the wall. Along symmetryplanes,zeronormalvelocity and zeronormal

gradientsfor othervariablesareusuallyprescribed.Additionally, Reynoldsshearstresseswith a

componentin thenormaldirectionwill alsobezero.Along thefreestream,knownvariablevalues

or zerosurfacestressesareprescribed.A major uncertaintyexistsas to the properboundary

condition at the jet exit plane. Experimentaldataby Andreopoulus(1983) had indicatedthat

exit conditionsare highly modified by the crossflow, especiallyat low R. Demuren(1983)

found that by specifyingconstanttotal pressureat thejet exit, axialvelocity profiles, similar to

thoseobservedexperimentallycould besimulated.However,in-planevelocity profileshadto be

prescribedempirically. Kim andBenson(1992)overcamethe uncertaintyby placing theinflow

boundaryone diameterinto the pipe from which the jet flow originates,and fully developed

pipe flow conditionswereprescribedat the recessedboundary.A different treatmentwould be

requiredif the jet exited throughan orifice rather thana pipe.

Equations(26) - (41) form closedsetswhich can be solvedby a finite-difference, finite

volume or finite-elementmethodto yield the mean flow and turbulencefields. By far the

mostpopularapproachis a combinationof finite differenceandfinite volume methods.These

are different manifestationsand extensionsof numerical techniquesoriginally proposedby

Chorin (1968), and Patankarand Spalding(1972). Notableexceptionsare the finite-element

computationsof Baker et al. (1987)andOh and Schetz(1990).

Currentnumericalmodelscan, in principle, beusedto predict most flows of jets in cross

flow which occur in practice. Both laminar and turbulent flows can be computed,so long as

theflow is not dominatedby rapid distortionor coherentstructures.Instabilitiesdevelopin jet

flowsfor ReynoldsnumbersgreaterthanO (10),sothatin mostpracticalsituationstheflow will

be turbulentor transitional. The former canbe handledby currentmodelswith properchoice

of the turbulencemodel. In the latter,largescalecoherentstructuresmayplay a dominantrole
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[Andreopoulos(1985)], and methodsbasedon Reynoldsaveragingmay be inadequate.Direct

calculationof the unsteadyflow will generallybe required,but this cannot be done for any

practical Reynoldsnumber,so a largeeddy simulationappearsto be a viable option. Such

approachesarereviewedin GalperinandOrszag(1993),butmuchresearchwork is still required

before they canbecomereliable predictive tools in applicationsof interesthere. In addition,

current turbulencemodels,cannotpredict higher-orderstatisticssuchas the Reynoldsstresses

[Speziale(1994)] in flows with rapid distortion (ratio of turbulent-to-mean-flowtime scales

greaterthan 50), or in flows with high compressibility(free shearflows with turbulentMach

numberof order 1). Of course,the questionof the importanceof suchhigher-orderstatisticsin

the presentflows hasbeenraised. Somestudiesindicatethat theyare lessimportantat high R,

wherepressureeffectsdominate,thanat low to mediumR.

Earlier modelcomputationsof the fully elliptic type suchasby Patankaret al. (1977)used

grids (15x15x10in the x, y, z directions)which are too coarsefor the resultsto beconsidered

reliable. Althoughcorrect trajectorieswerepredicted,velocity fields deviatedqualitativelyand

quantitativelyfrom experimentalobservations.Finer grid computationshavebeenreported,but

grid independencecould not bedemonstratedconclusivelyin anyof these. Multigfid methods

[Demuren(1992)] allow systematicstudiesof grid dependencesince on eachfiner grid level

therearetwiceasmanypointsin eachdirectionthanon thecoarserone,i.e. eight timesasmany

total grid nodesin threedimensions.Althoughup to 2.4 million nodes(i.e., 256x96x96on the

5th grid-level)wereused,ClausandVanka(1992)couldstill not demonstrategrid independence

of the computedvelocity andturbulencefields. Figure4 showscomparisonsof vertical profiles

of thestreamwisevelocity componentcomputedon thethreefinestgrids. It is obviousthat grid-

convergencehasnot beenachieved,especiallyin thenear-field.Similarcomparisonsareshown

for the turbulencelevel in Fig. 5. Far-field resultsappearcloser to grid-convergence.With

this typeof grid refinement,betterestimateof theresultscanbe obtainedby usingRichardson

extrapolationtechniques[Demurenand Wilson (1994)]. The questionof grid resolutioncannot

becompletelyseparatedfrom thatof theformalorderof accuracyof thenumericalscheme.Most

studiesof thePatankarandSpalding(1972)typehaveusedthehybrid upwind/centraldifference

schemeto approximateconvectionterms.This is monotonicandconservative,but it is knownto
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be highly diffusive. [Demuren(1985b)]. Studiesin which higher-orderdifferences,suchasthe

quadratic-upstream-weighted(QUICK) schemewere utilized e.g. Barataet al. (1991)] showed

that similar results,aswith lower-orderschemescould be obtainedon coarsergrids. However,

higher-orderschemestend to suffer from lack of boundednessin regionswith high gradients.

The uncertaintyin the specificationof boundaryconditionsfor the jet hole exit hasbeen

discussed.Figure6 showscontoursof the jet velocity, staticpressureand total pressureat the

exit planecomputedby Kim andBenson(1992).Noneof theseis uniform,which is acompelling

reasonfor including thejet pipe hole in thecalculationdomain.Other uncertaintiesinvolve the

specificationof inflow and near-wallconditionsfor turbulentquantities.

In manycomputationalstudies,the inadequacyof theturbulencemodelhasbeenblamedfor

the lackof agreementbetweencomputedresultsandexperimentaldata.Demuren(1992) tried to

isolatetheeffectof the turbulencemodelby performingcomputationson thesamegrid with the

k-emodeland theReynoldsstress(LRR-DH) model. Theresultsarecomparedto experimental

dataof Atldnsonet al. (1982)for opposedjets in crossflow in Figs. 7 and8, for the meanflow

andReynoldsstressfields,respectively.For themeanflow, thereis little to choosebetweenboth

modelpredictions,but the Reynoldsstressmodel clearly gives betterpredictionsof Reynolds

stressprofiles. From theseresults,it may be concludedthat the meanflow was not strongly

influencedby the turbulencefield. Thus,if the interestis solely in the meanflow field, the k-e

tui'bulencemodel,or an evensimplermodel,would beadequate.But, if theturbulencefield is

required,e.g., to predictmixing, thena Reynoldsstressmodelwould give muchbetterresults,

but at additionalcomputationalcost. The multigrid techniqueenablesthe additionalcost to be

minimized by ensuringnearlygrid-independentconvergencerate. Thus,for a 3-level multigrid

scheme,with (42x34x82)points on the finestgrid, convergenceof the Reynoldsstressmodel

computationscould beobtainedin lessthan 100 fine grid iterations.

ConcludingRemarks

In the studyof turbulentjets in crossflow, empiricalmodelsoffer quick andsimplemethods

for obtainingfirst-orderestimatesanda qualitativepicture of the jet trajectory, its extent, and

decayratesof its axialvelocityandtemperature.Themainrequirementfor reasonablepredictions
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is the useof correlationequationsor curvesderivedfrom experimentaldatabaseswith similar

characteristicsas the problemof interest.

Integral modelscontain in simplified forms mathematicalrepresentationsof the basiccon-

servationlaws, and can thus be appliedmuch more widely than empirical models. Several

physicalphenomenawhich occur in theflow aremodeledwith relationswhich aremoreor less

empirical. Combinationsof thesehavebeenusedsuccessfullyin integral models,so long as

they areproperly calibrated.Onecriticism of integralmodelsis that they provide little insight

into flow physics,sincethesameeffectcould beachievedin severaldifferentways.All integral

modelsarecomputationallycheapto use.The basicmodelsareconceptuallysimple,but more

sophisticatedmodelshavebeendevisedwhich enablemorecomplexjet crossflow interactions

to be analyzed.

Perturbationmodelsdo not requiremuchempirical input, but they aremostlyrestrictedto

the near-fieldor far-field wheresmallparametersrequiredfor expansionscanbedefined.They

enableorder-of-magnitudestudiesof theeffectsof variousparameters,andarethususefultools

for the investigationof flow physics.Beyondthese,theyhavelimited practicalutility.

Numericalmodelsoffer thebestchoiceaspracticalpredictivetoolsovera widerangeof jets

in crossflow applications.They require the leastassumptionsand empirical input. They are,

however,the mostcomputationallyintensive.Quite complexjet-jet, jet-crossflow interactions

canbe analyzed.Dependingon specificrequirements,the choiceof turbulencemodel may or

maynotbeimportant.Although,severalquite complexflow situationshavebeencomputedwith

a measureof quantitativeaccuracy,somequestionsremainas to the effectsof grid resolution,

turbulence model and boundary conditions on overall accuracy of computed results. Reliability

and computational accuracy are expected to improve with further developments in numerical

techniques and turbulence models. These are clearly the models of choice for the computation

of practical jets in cross flow situations. Computer codes are available commercially for this

purpose.
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FIGURE CAPTIONS

Figure 1 • Configurationof a jet in crossflow

Figure2 • Predictionof jet trajectoriesandconcentrationdecay;symbols-- experimental

data (from Fan, 1967),curves-- calculations(from Abraham,1971).

Figure3 • Nomenclaturefor perturbationmodeldescription(from CoelhoandHunt, 1989);

(a) 2D vortexsheetmodel,(b) 3D vortexsheetmodel,(c) entraining3D vortex

sheetmodel.

Figure4 • Grid dependencytest:comparisonbetweencomputationsfrom ClausandVanka

(1992) and experimentaldata from Khan et al. (1982) of streamwisevelocity

in the centerplane; (a) x/D = 4, (b) x/D = 8.

Figure5 • Grid dependencytest:comparisonbetweencomputationsfrom ClausandVanka

(1992)andexperimentaldatafrom Crabbet al. (1981)of turbulenceintensity

in the centerplane;(a) x/D = 2, (b) y/D = 1.35.

Figure 6 • Contoursplots of the flow field at the jet exit plane (from Kim and Benson,

1992);(a) axial velocity (Uj/Oj), (b) static pressure (P/lpl)_), (c) total pressure

1 2 1 -2
[(P+TpUj )/TpUj 1.

Figure 7 • Effect of turbulence model: comparison between computations from Demuren

(1992) and experimental data from Atldnson etal. (1982) of streamwise velocity

in the center plane; (a) flow configuration - opposed jets in cross flow, (b) x/D

= 8, (c) x/D = 12.

Figure 8 • Effect of turbulence model: comparison between computations from Demuren

(1992) and experimental data from Atldnson et al. (1982) of Reynolds stresses

in the center plane; (a) x/D = 8, (b) x/D = 12.

25



Section A-A

z_z

Cross flow

Jet

, III

II

X

26



60

4O

Y/D

20

oc;

!

FT= 10

J
..._...-o.-.---"'--_

50 IO0 150 200

60

40

Y/D

20

YID

!

F_= 20 ,,,_

R=4

O_ 50 100 150 200

40 _ O JJ_ J_'_"__ _--_-'''-_ R = _ o

00 50 100 150 200

6O

4O

Y/D

20

!

F_" = 80

F= U_
g IPI" Pol D

po

R= U--L
Uo

50 100 150 200

_/D

10-1

4

C/C l

2

10 "2

0
20 4O

!

F_-= 40
R =16

\
60 100 200 20 40 60 100 200

27



(a)

U o

r

i_ -_s_" E

(b)

U o

/////////

/'/,,,,,'/,, '

'///".-sj

tuj

(c)

uo:e 
////////1 --'i_O

tuj

Sj .

,,.////n///

tuj

28



4.0 __: 4.0 _3,_.

3.5 _ _,,_..._ 3.5 _ .._.__.._b3.0 "-. 3.0 _"" o

2.5 2.5
Y . y
5- 2.0 _ 2.0

1.5 1.5
_ 64 x24 x24 [] \\

1.0 1.0 128 x 48 x 24 _ J|

0,5 0.5 256 x 96 x_96 _3._/
0.0 I I. _o.j_,%,_ I w 0.0 , I . _ ,

0.4 0.8 1.2 1.6 0.2 0.4 0.6 0.8 1.0 1.2

(U/Uo) (U/Uo)
(a) (b)

29



0.7 _ .....-.---- 64x24X24

'_'' I _ _" 1

=.o_ _... _ .oo._-_...: ._ o

_o_ r,, o_ o .o.s_- )'..J ,
0.O_ 0.4 0.5 x/D

0.0 u._ v.2 •
(,ulUo)

(,a)

3O



(a)

(b)

(c)

31



s Symmetry plane

w Wall

(a)

Jo

2.0

1.5

y2
1.0

D

0.5

0.0
0.0

(b)

n _
-- k-_

D
[] expt

RSM a_/
= I - I

0.5 1.0

U3

Uo

.5

2.0

1.5

y2
_ 1.0
D

0.5

0.0
0.0

(c)

=11
D

[]

[]
-- k-_

[]
[] expt

i "'_/I

0.5 1.0

U3

Uo

1.5

32



20 __1.5 _ -

y2

f
0.5 I_
0.0

0.00 0.05 0.10

Uo_

2"0 I - I_

f°:l,1.5 []

\\

_ 1.0

t
0.0 w t-z j

(a)

0.o0 0.05

uJ
Uo_

-- k-£

[] expt
-- RSM

I

0.10

2.0

1.5

y2
1.0

D

0.5

0.0
0.00

2.0

1.5

y2
-- 1.0
D

0.5

0.0
-0.01

"9'
0 J ///

/" -- k-g

/" o expt

RSM

0.05 0.1

ug

[]/// - k-E

RSM

-", /" ' , I ,
0.00 0.01 0.02

U 2 U 3

%=

33



2.0

1.5

y2
-- 1.0
D

, [

0.5 - []

• []

[],
0.0

0.00

" I I
• I

I
_ I

I
• I

I
- I I

I
I
I

I

_/I I

0.05

ug

(b)

2.0 _,

'13

1.5 - o

y2 . c_
-- 1.0- 4
D

0.5-

0.0 '
0.00

|' I

t
l
l
%
%

%
\

\
%
I
I

I
J

= I

0.05

ug

-- k-E

[] expt
-- RSM

I

0.10

-- k-E

[] expt
-- RSM

I

0.10

2.0

1.5

y2
-- 1.0
D

0.5

0.0
0.00

1.5

y2
-- 1.0
D

0.5

/
"I I

I
I

I
I

I
_r "_ I

I I '
I

I
I

I
/

j -- k-£
?

[] expt

-- RSM

I I

0.05 0.10

ug
2,0 ° I

%
%

O !

D •
t

0 I

,7"
,p":,/_:l n

0.0
-0.01 0.00

-- k-E

[] expt
-- RSM

I

0.01 0.02

U 2 U 3

Uo

34



REPORT DOCUMENTATION PAGE Form Approved
OMB No 0704-0188

Publicreportingburdenfor this collectionof information is estimatedto average] hourperresponse,includingthetime for reviewinginstructions, searchinl_existingdata sources
gathering and rnaJntainin_1hedataneeded,and completingand reviewingthe collectionof information Sendcommentsregardingthis burdenestimate or any otheraspectof this
collectionof information,includingsuggestionsfor reducingthis burden,to Washington HeadquartersServices,Directorate for InformationOperationsand Reports,121.5Jefferson
Davis Highway,Suite 1204, ArlinKlon.VA 2220_-4302. andto the Office of Managementand Budget, Paperwork Reduction Project (0704-0|88), Washington,DE 20503,

1, AGENCY USE ONLY(Leave blank)! 2. REPORT DATE

August 1994

4. TITLE AND SUBTITLE

MODELING ,IETS [N (:ROSS FLOW

6. AUTHOR(S)

A.O. Demuren

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for C,omputer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research (:enter

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND AODRESS(ES)

National Aeronautics and Space Administration

Langley Research (',enter

Hampton, VA 23681-0001

3. REPORT TYPE AND DATES COVERED

Contractor Report

5. FUNDING NUMBERS

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 94-71

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-194965

ICASE Report No. 94-71

!1. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card

Final Report

To appear in Handbook of Fluid Dynamics and Fluid Machinery, J. Wiley & Sons, Publisher

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-U nlimited

Subject Category 34

13. ABSTRACT (Maximum 200 words)

Various approaches to the modeling of jets in cross flow are reviewed. These are grouped into four broad classes,

ilamely: empirical models, integral models, perturbation models, and numerical models. Empirical models depend

largely on the correlation of experimental data and are mostly useful for first-order estimates of global properties

such as jet trajectory and velocity and temperature decay rates. Integral models are based on some ordinary-

differential form of the conservation laws, but require substantial empirical calibration. They allow more details of

the flow field to be obtained; simpler versions have to assun|e similarity of velocity and temperature profiles, but

more sophisticated ones can actually calculate these profiles. Perturbation models require little empirical input, but

the need for small parameters to ensure convergent expansions limits their application to either the near-field or the

far-field. Therefore, they are mostly useful for the study of flow physics. Numerical models are based on conservation

laws in partial-differentiM form. They require little empirical input and have the wides range of applicability. They

also require the most computational resources. Although many qualitative and quantitative features of jets in

cross flow have been predicted with numerical models, many issues affecting accuracy such as grid resolution and

turbulence model are not completely resolved.

14. SUBJECT TERMS

.Jets, turbulence, n|odeling, cross flow, integral methods, perturbation methods, numer-

ical methods

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATIOI_

OF THIS PAGE

U nclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

IS. NUMBER OF PAGES

36

16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

Standard Form 298(Re¥. 2-89)
Prescribed byANSI Std Z39-18
298-102




